Angebote zu "Detection" (6 Treffer)

Kategorien

Shops

Deep Learning and Convolutional Neural Networks...
€ 87.99 *
ggf. zzgl. Versand

This book presents a detailed review of the state of the art in deep learning approaches for semantic object detection and segmentation in medical image computing, and large-scale radiology database mining. A particular focus is placed on the application of convolutional neural networks, with the theory supported by practical examples. Features: highlights how the use of deep neural networks can address new questions and protocols, as well as improve upon existing challenges in medical image computing; discusses the insightful research experience of Dr. Ronald M. Summers; presents a comprehensive review of the latest research and literature; describes a range of different methods that make use of deep learning for object or landmark detection tasks in 2D and 3D medical imaging; examines a varied selection of techniques for semantic segmentation using deep learning principles in medical imaging; introduces a novel approach to interleaved text and image deep mining on a large-scale radiology image database.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Understanding Network Hacks
€ 32.99 *
ggf. zzgl. Versand

This book explains how to see one´s own network through the eyes of an attacker, to understand their techniques and effectively protect against them. Through Python code samples the reader learns to code tools on subjects such as password sniffing, ARP poisoning, DNS spoofing, SQL injection, Google harvesting and Wifi hacking. Furthermore the reader will be introduced to defense methods such as intrusion detection and prevention systems and log file analysis by diving into code.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Segmentation of mammographic images for compute...
€ 50.99 *
ggf. zzgl. Versand

Computer-aided diagnosis systems are currently at the heart of many clinical protocols. This book puts forward a hierarchical architecture for the design of a robust and efficient CAD tool for breast cancer detection. It focuses on the reduction of false alarms rate through the identification of image regions of foremost interest (potential cancerous areas). The dynamic range of the image is stretched to enhance the contrast between tissues and background and favors accurate breast region extraction. Then follow pectoral muscle segmentation since it regularly tampers breast tissue analysis. Extracting pectoral muscle tissues is both hard and challenging due to its overlap with dense tissues. To overcome this difficulty, a validation process followed by a refinement strategy is proposed to detect and correct the segmentation imperfections. In the last chapter dealing with breast density analysis, to address the inter-variability in gray levels distributions, an optimized gray level transport map is introduced for contrast standardization. With this technique, dense region areas computed using simple thresholding are highly correlated to density classes from an annotated dataset.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Machine Learning for Big Data Analysis
€ 87.99 *
ggf. zzgl. Versand

A metaheuristic is a higher-level procedure designed to select a heuristic (partial search algorithm) that may lead to a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information. The basic principle of metaheuristics is to sample a set of solutions which is large enough to be completely sampled. As metaheuristics make few assumptions about the optimization problem to be solved, they may be put to use in a variety of problems. Metaheuristics do not however, guarantee that a globally optimal solution can be found on some class of problems since most of them implement some form of stochastic optimization. Hence the solution found is often dependent on the set of random variables generated. By searching over a large set of feasible solutions, metaheuristics can often find good solutions with less computational effort than optimization algorithms, iterative methods, or simple heuristics. As such, they are useful approaches for optimization problems. Even though the metaheuristics are robust enough to yield optimum solutions, yet they often suffer from time complexity and degenerate solutions. In an effort to alleviate these problems, scientists and researchers have come up with the hybridization of the different metaheuristic approaches by conjoining with other soft computing tools and techniques to yield failsafe solutions. In a recent advancement, quantum mechanical principles are being employed to cut down the time complexity of the metaheuristic approaches to a great extent. Thus, the hybrid metaheuristic approaches have come a long way in dealing with the real life optimization problems quite successfully. Proper and faithful analysis of digital images has been in the helm of affairs in the computer vision research community given the varied amount of uncertainty inherent in digital images. Images exhibit varied uncertainty and ambiguity of information and hence understanding an image scene is far from being a general procedure. The situation becomes even graver when the images become corrupt with noise artifacts. The applications of proper analysis of images encompass a wide range of applications which include image processing, image mining, image inpainting, video surveillance, intelligent transportation systems to name a few. One of the notable areas of research in image analysis is the estimation of age progression in human beings through analysis of wrinkles in face images, which can be further utilized for tracing unknown or missing persons. Hurdle detection is one of the common tasks in robotic vision that have been done through image processing, by identifying different type of objects in the image and then calculating the distance between robot and hurdles. Image analysis has a lot to contribute in this direction. Processing of color images takes the problem of image analysis to a new dimension. Apart from processing and analysis of the color gamut which involves a lot of computational overhead, the problem also involves analysis of the varied amount of uncertainty exhibited by the color images. A video is a very fast movement of pictures. Video analysis as a part of image analysis focuses on Shot Boundary Detection (SBD), dissolve detection, detection of gradual transitions and detection of fade ins/outs. Recent trends in research on image analysis rely heavily on pose and gesture analysis. Typical applications include human-machine interaction, behavior analysis, video surveillance, annotation, search and retrieval, motion capture for the entertainment industry and interactive web-based applications. Real-time video analysis algorithms mainly focus on hand and head tracking and gesture analysis. A faithful gesture recognition algorithm can be implemented with techniques borrowed from computer vision and image processing. The evolution of the functional Magnetic Resonance Imaging (fMRI) has led to proper analysis of the study mechanisms in the brain. Several statistic

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Machine Learning
€ 68.99 *
ggf. zzgl. Versand

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Outlier Analysis
€ 54.99 *
ggf. zzgl. Versand

This book provides comprehensive coverage of the field of outlier analysis from a computer science point of view. It integrates methods from data mining, machine learning, and statistics within the computational framework and therefore appeals to multiple communities. The chapters of this book can be organized into three categories: Basic algorithms: Chapters 1 through 7 discuss the fundamental algorithms for outlier analysis, including probabilistic and statistical methods, linear methods, proximity-based methods, high-dimensional (subspace) methods, ensemble methods, and supervised methods. Domain-specific methods: Chapters 8 through 12 discuss outlier detection algorithms for various domains of data, such as text, categorical data, time-series data, discrete sequence data, spatial data, and network data. Applications: Chapter 13 is devoted to various applications of outlier analysis. Some guidance is also provided for the practitioner. The second edition of this book is more detailed and is written to appeal to both researchers and practitioners. Significant new material has been added on topics such as kernel methods, one-class support-vector machines, matrix factorization, neural networks, outlier ensembles, time-series methods, and subspace methods. It is written as a textbook and can be used for classroom teaching.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot