Angebote zu "Data" (74 Treffer)

Data Mining
€ 47.99 *
ggf. zzgl. Versand

Data alone are worth almost nothing. While data collection is increasing exponentially worldwide, a clear distinction between retrieving data and obtaining knowledge has to be made. Data are retrieved while measuring phenomena or gathering facts. Knowledge refers to data patterns and trends that are useful for decision making. Data interpretation creates a challenge that is particularly present in system identification, where thousands of models may explain a given set of measurements. Manually interpreting such data is not reliable. One solution is to use data mining. This book thus proposes an integration of techniques from data mining, a field of research where the aim is to find knowledge from data, into an existing multiple-model system identification methodology. In addition to providing information about the candidate model space, data mining is found to be a valuable tool for supporting decisions related to subsequent sensor placement.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Data Science
€ 24.90 *
ggf. zzgl. Versand

Data Scientisten (m/w) sind derzeit auf dem Jobmarkt heißbegehrt. In Amerika sind erfahrene Data Scientisten so beliebt wie eine Getränkebude in der Wüste. Aber auch in Deutschland ist eine steigende Nachfrage nach diesem Skillprofil erkennbar. Immer mehr Unternehmen bauen ´´Analytics´´-Abteilungen auf bzw. aus und suchen entsprechende Mitarbeiter. Nur: was macht eigentlich ein Data Scientist? Irgendetwas mit künstlicher Intelligenz, Machine Learning, Data-Mining, Python-Programmierung und Big Data. So genau weiß es eigentlich niemand ... Das Buch ist eine Einführung und Übersicht über das weitumfassende Themengebiet Data Science. Es werden die Datenquellen (Datenbanken, Data-Warehouse, Hadoop etc.) und die Softwareprodukte für die Datenanalyse vorgestellt (Data-Science-Plattformen, ML Bibliotheken). Die wichtigsten Verfahren des Machine Learnings werden ebenso behandelt wie beispielhafte Anwendungsfälle aus verschiedenen Branchen.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Data Analytics
€ 28.99 *
ggf. zzgl. Versand

This book is a comprehensive introduction to the methods and algorithms of modern data analytics. It provides a sound mathematical basis, discusses advantages and drawbacks of different approaches, and enables the reader to design and implement data analytics solutions for real-world applications. This book has been used for more than ten years in the Data Mining course at the Technical University of Munich. Much of the content is based on the results of industrial research and development projects at Siemens.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
The Data Science Design Manual
€ 42.99 *
ggf. zzgl. Versand

This engaging and clearly written textbook/reference provides a must-have introduction to the rapidly emerging interdisciplinary field of data science. It focuses on the principles fundamental to becoming a good data scientist and the key skills needed to build systems for collecting, analyzing, and interpreting data. The Data Science Design Manual is a source of practical insights that highlights what really matters in analyzing data, and provides an intuitive understanding of how these core concepts can be used. The book does not emphasize any particular programming language or suite of data-analysis tools, focusing instead on high-level discussion of important design principles. This easy-to-read text ideally serves the needs of undergraduate and early graduate students embarking on an ´´Introduction to Data Science´´ course. It reveals how this discipline sits at the intersection of statistics, computer science, and machine learning, with a distinct heft and character of its own. Practitioners in these and related fields will find this book perfect for self-study as well. Additional learning tools: Contains ´´War Stories,´´ offering perspectives on how data science applies in the real world Includes ´´Homework Problems,´´ providing a wide range of exercises and projects for self-study Provides a complete set of lecture slides and online video lectures at www.data-manual.com Provides ´´Take-Home Lessons,´´ emphasizing the big-picture concepts to learn from each chapter Recommends exciting ´´Kaggle Challenges´´ from the online platform Kaggle Highlights ´´False Starts,´´ revealing the subtle reasons why certain approaches fail Offers examples taken from the data science television show ´´The Quant Shop´´ (www.quant-shop.com)

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Data Mining with SPSS Modeler
€ 60.99 *
ggf. zzgl. Versand

Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Primer to Analysis of Genomic Data Using R
€ 42.99 *
ggf. zzgl. Versand

Through this book, researchers and students will learn to use R for analysis of large-scale genomic data and how to create routines to automate analytical steps. The philosophy behind the book is to start with real world raw datasets and perform all the analytical steps needed to reach final results. Though theory plays an important role, this is a practical book for graduate and undergraduate courses in bioinformatics and genomic analysis or for use in lab sessions. How to handle and manage high-throughput genomic data, create automated workflows and speed up analyses in R is also taught. A wide range of R packages useful for working with genomic data are illustrated with practical examples. The key topics covered are association studies, genomic prediction, estimation of population genetic parameters and diversity, gene expression analysis, functional annotation of results using publically available databases and how to work efficiently in R with large genomic datasets. Important principles are demonstrated and illustrated through engaging examples which invite the reader to work with the provided datasets. Some methods that are discussed in this volume include: signatures of selection, population parameters (LD, FST, FIS, etc); use of a genomic relationship matrix for population diversity studies; use of SNP data for parentage testing; snpBLUP and gBLUP for genomic prediction. Step-by-step, all the R code required for a genome-wide association study is shown: starting from raw SNP data, how to build databases to handle and manage the data, quality control and filtering measures, association testing and evaluation of results, through to identification and functional annotation of candidate genes. Similarly, gene expression analyses are shown using microarray and RNAseq data. At a time when genomic data is decidedly big, the skills from this book are critical. In recent years R has become the de facto< tool for analysis of gene expression data, in addition to its prominent role in analysis of genomic data. Benefits to using R include the integrated development environment for analysis, flexibility and control of the analytic workflow. Included topics are core components of advanced undergraduate and graduate classes in bioinformatics, genomics and statistical genetics. This book is also designed to be used by students in computer science and statistics who want to learn the practical aspects of genomic analysis without delving into algorithmic details. The datasets used throughout the book may be downloaded from the publisher´s website.

Anbieter: buecher.de
Stand: Dec 12, 2018
Zum Angebot
Data Structures and Algorithms with Python
€ 36.99 *
ggf. zzgl. Versand

This textbook explains the concepts and techniques required to write programs that can handle large amounts of data efficiently. Project-oriented and classroom-tested, the book presents a number of important algorithms supported by examples that bring meaning to the problems faced by computer programmers. The idea of computational complexity is also introduced, demonstrating what can and cannot be computed efficiently so that the programmer can make informed judgements about the algorithms they use. Features: includes both introductory and advanced data structures and algorithms topics, with suggested chapter sequences for those respective courses provided in the preface; provides learning goals, review questions and programming exercises in each chapter, as well as numerous illustrative examples; offers downloadable programs and supplementary files at an associated website, with instructor materials available from the author; presents a primer on Python for those from a different language background.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Monotone Prediction Models in Data Mining
€ 54.99 *
ggf. zzgl. Versand

In many decision problems, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. One common type is the monotonicity constraint stating that the greater an input is, the greater the output must be, all other inputs being equal. Well-known examples include investment decisions, medical diagnosis, selection and evaluation tasks. However, often the models obtained by traditional data mining techniques alone does not meet these constraints. Therefore, this book provides a thorough study on the incorporation of monotonicity constraints into a data mining process to improve knowledge discovery and facilitate the decision-making process for end-users by deriving more accurate and plausible decision models. The main contributions include a novel procedure to test the degree of monotonicity of a data set, a greedy algorithm to transform non-monotone into monotone data, and extended and novel approaches to build monotone decision models. The theoretical and empirical findings should be valuable to graduates, researchers and practitioners involved in the study and development of data mining systems.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
SOA for Data Interoperability in Web Applications
€ 72.99 *
ggf. zzgl. Versand

The realisation of Service-Oriented Architecture (SOA) to communicate data between systems running on different platforms lack an organised framework to capture all the essential elements required for successful interoperability between web applications and their services. In this work, a SOA for Data Interoperability in Web Applications (SOADIWA) was designed to address this problem. The architecture of SOADIWA was based on five layers, namely Web Application Layer (WAL), Visualization Input Layer (VIL), Visualization Output Layer (VOL), Web Service Layer (WSL) and Quality of Service Assurance Certifier Layer (QoSACL). In WAL, the Service Provider (SP) received request from the Service Requester (SR) through the Stream Socket (SS) with a connection-oriented transmission control protocol that provided appropriate website for rendering of services. The SR provided requested data which must be accepted, processed and returned for a particular need using component object model and file transfer protocols. The VIL and VOL used Breshenham´s line drawing algorithm and context-sensitive visualization techniques for data exploration and analysis.

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot
Machine Learning for Big Data Analysis
€ 87.99 *
ggf. zzgl. Versand

A metaheuristic is a higher-level procedure designed to select a heuristic (partial search algorithm) that may lead to a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information. The basic principle of metaheuristics is to sample a set of solutions which is large enough to be completely sampled. As metaheuristics make few assumptions about the optimization problem to be solved, they may be put to use in a variety of problems. Metaheuristics do not however, guarantee that a globally optimal solution can be found on some class of problems since most of them implement some form of stochastic optimization. Hence the solution found is often dependent on the set of random variables generated. By searching over a large set of feasible solutions, metaheuristics can often find good solutions with less computational effort than optimization algorithms, iterative methods, or simple heuristics. As such, they are useful approaches for optimization problems. Even though the metaheuristics are robust enough to yield optimum solutions, yet they often suffer from time complexity and degenerate solutions. In an effort to alleviate these problems, scientists and researchers have come up with the hybridization of the different metaheuristic approaches by conjoining with other soft computing tools and techniques to yield failsafe solutions. In a recent advancement, quantum mechanical principles are being employed to cut down the time complexity of the metaheuristic approaches to a great extent. Thus, the hybrid metaheuristic approaches have come a long way in dealing with the real life optimization problems quite successfully. Proper and faithful analysis of digital images has been in the helm of affairs in the computer vision research community given the varied amount of uncertainty inherent in digital images. Images exhibit varied uncertainty and ambiguity of information and hence understanding an image scene is far from being a general procedure. The situation becomes even graver when the images become corrupt with noise artifacts. The applications of proper analysis of images encompass a wide range of applications which include image processing, image mining, image inpainting, video surveillance, intelligent transportation systems to name a few. One of the notable areas of research in image analysis is the estimation of age progression in human beings through analysis of wrinkles in face images, which can be further utilized for tracing unknown or missing persons. Hurdle detection is one of the common tasks in robotic vision that have been done through image processing, by identifying different type of objects in the image and then calculating the distance between robot and hurdles. Image analysis has a lot to contribute in this direction. Processing of color images takes the problem of image analysis to a new dimension. Apart from processing and analysis of the color gamut which involves a lot of computational overhead, the problem also involves analysis of the varied amount of uncertainty exhibited by the color images. A video is a very fast movement of pictures. Video analysis as a part of image analysis focuses on Shot Boundary Detection (SBD), dissolve detection, detection of gradual transitions and detection of fade ins/outs. Recent trends in research on image analysis rely heavily on pose and gesture analysis. Typical applications include human-machine interaction, behavior analysis, video surveillance, annotation, search and retrieval, motion capture for the entertainment industry and interactive web-based applications. Real-time video analysis algorithms mainly focus on hand and head tracking and gesture analysis. A faithful gesture recognition algorithm can be implemented with techniques borrowed from computer vision and image processing. The evolution of the functional Magnetic Resonance Imaging (fMRI) has led to proper analysis of the study mechanisms in the brain. Several statistic

Anbieter: buecher.de
Stand: Dec 10, 2018
Zum Angebot