€ 62.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

This book provides a comprehensive, modern introduction to convex optimization, a field that is becoming increasingly important in applied mathematics, economics and finance, engineering, and computer science, notably in data science and machine learning. Written by a leading expert in the field, this book includes recent advances in the algorithmic theory of convex optimization, naturally complementing the existing literature. It contains a unified and rigorous presentation of the acceleration techniques for minimization schemes of first- and second-order. It provides readers with a full treatment of the smoothing technique, which has tremendously extended the abilities of gradient-type methods. Several powerful approaches in structural optimization, including optimization in relative scale and polynomial-time interior-point methods, are also discussed in detail. Researchers in theoretical optimization as well as professionals working on optimization problems will find this book very useful. It presents many successful examples of how to develop very fast specialized minimization algorithms. Based on the author´s lectures, it can naturally serve as the basis for introductory and advanced courses in convex optimization for students in engineering, economics, computer science and mathematics.

Anbieter: buecher.de

Stand: Oct 19, 2018 Zum Angebot

Stand: Oct 19, 2018 Zum Angebot

€ 54.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

This book is an introduction to relevant aspects of the foraging literature for algorithmic design, and an overview of key families of optimization algorithms that stem from a foraging metaphor. The authors first offer perspectives on foraging and foraging-inspired algorithms for optimization, they then explain the techniques inspired by the behaviors of vertebrates, invertebrates, and non-neuronal organisms, and they then discuss algorithms based on formal models of foraging, how to evolve a foraging strategy, and likely future developments. No prior knowledge of natural computing is assumed. This book will be of particular interest to graduate students, academics and practitioners in computer science, informatics, data science, management science, and other application domains.

Anbieter: buecher.de

Stand: Oct 14, 2018 Zum Angebot

Stand: Oct 14, 2018 Zum Angebot

€ 87.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

A metaheuristic is a higher-level procedure designed to select a heuristic (partial search algorithm) that may lead to a sufficiently good solution to an optimization problem, especially with incomplete or imperfect information. The basic principle of metaheuristics is to sample a set of solutions which is large enough to be completely sampled. As metaheuristics make few assumptions about the optimization problem to be solved, they may be put to use in a variety of problems. Metaheuristics do not however, guarantee that a globally optimal solution can be found on some class of problems since most of them implement some form of stochastic optimization. Hence the solution found is often dependent on the set of random variables generated. By searching over a large set of feasible solutions, metaheuristics can often find good solutions with less computational effort than optimization algorithms, iterative methods, or simple heuristics. As such, they are useful approaches for optimization problems. Even though the metaheuristics are robust enough to yield optimum solutions, yet they often suffer from time complexity and degenerate solutions. In an effort to alleviate these problems, scientists and researchers have come up with the hybridization of the different metaheuristic approaches by conjoining with other soft computing tools and techniques to yield failsafe solutions. In a recent advancement, quantum mechanical principles are being employed to cut down the time complexity of the metaheuristic approaches to a great extent. Thus, the hybrid metaheuristic approaches have come a long way in dealing with the real life optimization problems quite successfully. Proper and faithful analysis of digital images has been in the helm of affairs in the computer vision research community given the varied amount of uncertainty inherent in digital images. Images exhibit varied uncertainty and ambiguity of information and hence understanding an image scene is far from being a general procedure. The situation becomes even graver when the images become corrupt with noise artifacts. The applications of proper analysis of images encompass a wide range of applications which include image processing, image mining, image inpainting, video surveillance, intelligent transportation systems to name a few. One of the notable areas of research in image analysis is the estimation of age progression in human beings through analysis of wrinkles in face images, which can be further utilized for tracing unknown or missing persons. Hurdle detection is one of the common tasks in robotic vision that have been done through image processing, by identifying different type of objects in the image and then calculating the distance between robot and hurdles. Image analysis has a lot to contribute in this direction. Processing of color images takes the problem of image analysis to a new dimension. Apart from processing and analysis of the color gamut which involves a lot of computational overhead, the problem also involves analysis of the varied amount of uncertainty exhibited by the color images. A video is a very fast movement of pictures. Video analysis as a part of image analysis focuses on Shot Boundary Detection (SBD), dissolve detection, detection of gradual transitions and detection of fade ins/outs. Recent trends in research on image analysis rely heavily on pose and gesture analysis. Typical applications include human-machine interaction, behavior analysis, video surveillance, annotation, search and retrieval, motion capture for the entertainment industry and interactive web-based applications. Real-time video analysis algorithms mainly focus on hand and head tracking and gesture analysis. A faithful gesture recognition algorithm can be implemented with techniques borrowed from computer vision and image processing. The evolution of the functional Magnetic Resonance Imaging (fMRI) has led to proper analysis of the study mechanisms in the brain. Several statistic

Anbieter: buecher.de

Stand: Sep 25, 2018 Zum Angebot

Stand: Sep 25, 2018 Zum Angebot

€ 52.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

A decision procedure is an algorithm that, given a decision problem, terminates with a correct yes/no answer. Here, the authors focus on theories that are expressive enough to model real problems, but are still decidable. Specifically, the book concentrates on decision procedures for first-order theories that are commonly used in automated verification and reasoning, theorem-proving, compiler optimization and operations research. The techniques described in the book draw from fields such as graph theory and logic, and are routinely used in industry. The authors introduce the basic terminology of satisfiability modulo theories and then, in separate chapters, study decision procedures for each of the following theories: propositional logic; equalities and uninterpreted functions; linear arithmetic; bit vectors; arrays; pointer logic; and quantified formulas.

Anbieter: buecher.de

Stand: Sep 25, 2018 Zum Angebot

Stand: Sep 25, 2018 Zum Angebot

€ 65.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques - together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models. The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts. The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models. All major classical techniques: Mean/Least-Squares regression and filtering, Kalman filtering, stochastic approximation and online learning, Bayesian classification, decision trees, logistic regression and boosting methods. The latest trends: Sparsity, convex analysis and optimization, online distributed algorithms, learning in RKH spaces, Bayesian inference, graphical and hidden Markov models, particle filtering, deep learning, dictionary learning and latent variables modeling. Case studies - protein folding prediction, optical character recognition, text authorship identification, fMRI data analysis, change point detection, hyperspectral image unmixing, target localization, channel equalization and echo cancellation, show how the theory can be applied. MATLAB code for all the main algorithms are available on an accompanying website, enabling the reader to experiment with the code.

Anbieter: buecher.de

Stand: Oct 8, 2018 Zum Angebot

Stand: Oct 8, 2018 Zum Angebot

€ 70.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

This book introduces Python scripting for geographic information science (GIS) workflow optimization using ArcGIS. It builds essential programming skills for automating GIS analysis. Over 200 sample Python scripts and 175 classroom-tested exercises reinforce the learning objectives. Readers will learn to: - Write and run Python in the ArcGIS Python Window, the PythonWin IDE, and the PyScripter IDE - Work with Python syntax and data types - Call ArcToolbox tools, batch process GIS datasets, and manipulate map documents using the arcpy package - Read and modify proprietary and ASCII text GIS data - Parse HTML web pages and KML datasets - Create Web pages and fetch GIS data from Web sources. - Build user-interfaces with the native Python file dialog toolkit or the ArcGIS Script tools and PyToolboxes Python for ArcGIS is designed as a primary textbook for advanced-level students in GIS. Researchers, government specialists and professionals working in GIS will also find this book useful as a reference.

Anbieter: buecher.de

Stand: Sep 25, 2018 Zum Angebot

Stand: Sep 25, 2018 Zum Angebot

€ 22.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

An indispensable collection of practical tips and real-world advice for tackling common Python problems and taking your code to the next level. Features interviews with high-profile Python developers who share their tips, tricks, best practices, and real-world advice gleaned from years of experience. The Hacker´s Guide to Python will teach you how to fine tune your Python code and give you a deeper understanding of how the language works under the hood. This essential guide distills years of Python experience into a handy collection of general advice and specific tips that will help you pick the right libraries, distribute your code correctly, build future-proof programs, and optimize your programs down to the bytecode. Author Julien Danjou, an OpenStack contributor (the largest open source project written in Python) covers a swath of important areas like scaling, testing, and porting your code. You´ll also learn directly from Python experts and get real-world (and time-saving) advice on topics like unit testing, packaging code, performances and optimizations, and designing APIs. Elevate your code and get seriously good at Python with The Hacker´s Guide to Python!

Anbieter: buecher.de

Stand: Oct 18, 2018 Zum Angebot

Stand: Oct 18, 2018 Zum Angebot

€ 43.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

Learn Intel 64 assembly language and architecture, become proficient in C, and understand how the programs are compiled and executed down to machine instructions, enabling you to write robust, high-performance code. Low-Level Programming explains Intel 64 architecture as the result of von Neumann architecture evolution. The book teaches the latest version of the C language (C11) and assembly language from scratch. It covers the entire path from source code to program execution, including generation of ELF object files, and static and dynamic linking. Code examples and exercises are included along with the best code practices. Optimization capabilities and limits of modern compilers are examined, enabling you to balance between program readability and performance. The use of various performance-gain techniques is demonstrated, such as SSE instructions and pre-fetching. Relevant Computer Science topics such as models of computation and formal grammars are addressed, and their practical value explained. What You´ll Learn Low-Level Programming teaches programmers to: Freely write in assembly language Understand the programming model of Intel 64 Write maintainable and robust code in C11 Follow the compilation process and decipher assembly listings Debug errors in compiled assembly code Use appropriate models of computation to greatly reduce program complexity Write performance-critical code Comprehend the impact of a weak memory model in multi-threaded applications Who This Book Is For Intermediate to advanced programmers and programming students

Anbieter: buecher.de

Stand: Oct 16, 2018 Zum Angebot

Stand: Oct 16, 2018 Zum Angebot

€ 56.99 *

ggf. zzgl. Versand

ggf. zzgl. Versand

Virtual machines are rapidly becoming an essential element in providing system security, flexibility, cross-platform compatibility, reliability, and resource efficiency. Designed to solve problems in combining and using major computer system components, virtual machine technologies are important to a number of disciplines, including operating systems, programming languages, and computer architecture. For example, at the process level, virtualizing technologies support dynamic program translation and platform-independent network computing. At the system level, they support multiple operating system environments on the same hardware platform and in servers. Historically, individual virtual machine techniques have been developed within the specific disciplines that employ them (in some cases they aren?t even referred to as ?virtual machines?), making it difficult to see their common underlying relationships in a cohesive way. In this text, Smith and Nair take a new approach by examining virtual machines as a unified discipline. Pulling together cross-cutting technologies allows virtual machine implementations to be studied and engineered in a well-structured manner. Topics include instruction set emulation, dynamic program translation and optimization, high level virtual machines (including Java and CLI), and system virtual machines for both single-user systems and servers.

Anbieter: buecher.de

Stand: Oct 15, 2018 Zum Angebot

Stand: Oct 15, 2018 Zum Angebot

€ 149.85 *

ggf. zzgl. Versand

ggf. zzgl. Versand

Erscheinungsdatum: 09/2009Medium: BuchEinband: GebundenTitel: Harmony Search Algorithms for Structural Design OptimizationRedaktion: Geem, Zong WooVerlag: Springer-Verlag GmbH // Springer BerlinSprache: EnglischSchlagworte: EDV // Theorie // Inform

Anbieter: RAKUTEN: Ihr Mark...

Stand: Oct 14, 2018 Zum Angebot

Stand: Oct 14, 2018 Zum Angebot